<- factor(c("Poor", "Improved", "Excellent"), ordered = T)
class
class#> [1] Poor Improved Excellent
#> Levels: Excellent < Improved < Poor
<- factor(
class c("Poor", "Improved", "Excellent"),
levels = c("Poor", "Improved", "Excellent"),
ordered = T
)
class#> [1] Poor Improved Excellent
#> Levels: Poor < Improved < Excellent
在创建因子时,将水平设置为unique(x)
;或者在创建因子后再对其使用fct_inorder()
函数,需要forcats包(包含在tidyverse全家桶中)。
<- c("A", "T", "T", "A", "C", "K")
x <- factor(x, levels = unique(x))
y
y#> [1] A T T A C K
#> Levels: A T C K
%>%
x factor() %>%
fct_inorder()
#> [1] A T T A C K
#> Levels: A T C K
想要以非字母表顺序显示字符串向量时(如一个轴为离散变量的绘图),就需要用到因子。forcats 包中含有大量处理因子的函数。
当字符串向量中有很多重复元素时,用 factor (本质是整数)储存比用字符串节省空间。因此,R 基础包中的很多函数都自动将字符串转换为因子。这意味着因子经常出现在并不真正适合它们的地方。好在不用担心 tidyverse 中会出现这种问题。
library(forcats)
要想创建一个因子,必须先创建 levels 向量:
<- c(
month_levels "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
)
## 非因子的排序遵循字母表排序
<- c("Dec", "Apr", "Jan", "Mar", "Mar", "Apr")
x1
x1#> [1] "Dec" "Apr" "Jan" "Mar" "Mar" "Apr"
sort(x1)
#> [1] "Apr" "Apr" "Dec" "Jan" "Mar" "Mar"
## 因子:按预先声明的因子顺序排序
<- factor(x1, levels = month_levels)
y1 sort(y1)
#> [1] Jan Mar Mar Apr Apr Dec
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 因子:字母表排序
<- factor(x1) # 如果省略了定义水平的这个步骤直接创建因子
y2 sort(y2) # 会按字母顺序排序
#> [1] Apr Apr Dec Jan Mar Mar
#> Levels: Apr Dec Jan Mar
## 因子:以初始数据的出现顺序作为默认排序
# 令levels参数为unique(x),或在创建因子后使用fct_inorder()函数
<- factor(x1, levels = unique(x1))
y3 sort(y3)
#> [1] Dec Apr Apr Jan Mar Mar
#> Levels: Dec Apr Jan Mar
<- factor(x1) %>% fct_inorder()
y4 sort(y4)
#> [1] Dec Apr Apr Jan Mar Mar
#> Levels: Dec Apr Jan Mar
fct_relevel()
随时重新手动设定顺序
<- c("low", "high", "medium", "medium", "low", "high", "high")
income <- factor(income)
x %>% fct_relevel(levels = c("high", "medium", "low"))
x #> [1] low high medium medium low high high
#> Levels: high medium low
%>% fct_relevel(levels = c("medium"))
x #> [1] low high medium medium low high high
#> Levels: medium high low
%>% fct_relevel("medium", after = Inf)
x #> [1] low high medium medium low high high
#> Levels: high low medium
fct_rev()
对因子逆序
<- tibble(
d x = c("a", "a", "b", "b", "c", "c"),
y = c(2, 2, 1, 5, 0, 3)
)
%>%
d mutate(x = fct_rev(x)) %>%
ggplot(aes(x = x, y = y)) +
geom_point()
fct_reorder()
fct_reorder(x, y, .fun = , .desc = FALSE)
按 x 分类,根据每个分类变量对应 y 值的向量经过 .fun 运算后的结果来对 x 排序
%>%
d # x轴因子的顺序为字母顺序
ggplot(aes(x = x, y = y)) +
geom_point()
%>%
d # x因子的顺序变为按照每组成员的y值的中位数的降序来排序
mutate(x = fct_reorder(x, y, .fun = median, .desc = TRUE)) %>%
ggplot(aes(x = x, y = y)) +
geom_point()
%>%
d # x因子的顺序变为按照每组成员的y值的最小值的降序来排序
mutate(x = fct_reorder(x, y, .fun = median, .desc = TRUE)) %>%
ggplot(aes(x = x, y = y)) +
geom_point()
<- c("Dec", "Apr", "Jam", "Mar")
x2 <- factor(x2, levels = month_levels)
y5 # 不再水平范围内的值自动转换为NA
y5 #> [1] Dec Apr <NA> Mar
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
levels(y1)
#> [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
levels(y2)
#> [1] "Apr" "Dec" "Jan" "Mar"
levels(y3)
#> [1] "Dec" "Apr" "Jan" "Mar"
::gss_cat %>% head(n = 5) # 发现一些字段是factor
forcats#> # A tibble: 5 x 9
#> year marital age race rincome partyid relig denom tvhours
#> <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int>
#> 1 2000 Never married 26 White $8000 to 9999 Ind,near r~ Prot~ Sout~ 12
#> 2 2000 Divorced 48 White $8000 to 9999 Not str re~ Prot~ Bapt~ NA
#> 3 2000 Widowed 67 White Not applicable Independent Prot~ No d~ 2
#> 4 2000 Never married 39 White Not applicable Ind,near r~ Orth~ Not ~ 4
#> 5 2000 Divorced 25 White Not applicable Not str de~ None Not ~ 1
## 查看因子水平
%>% count(race) # count()函数
gss_cat #> # A tibble: 3 x 2
#> race n
#> <fct> <int>
#> 1 Other 1959
#> 2 Black 3129
#> 3 White 16395
ggplot(gss_cat, aes(race)) +
geom_bar() # 条形图,不显示记数为0的水平
ggplot(gss_cat, aes(race)) +
geom_bar() +
scale_x_discrete(drop = FALSE) # 显示记数为0的水平
修改水平不仅可以使得图形标签更美观清晰,以满足出版发行的要求,还可以将水平汇集成更高层次的显示。
修改水平最常用、最强大的工具是 fct_recode()
函数,它可以对每个水平进行修改或重新编码,让没有明确提及的水平保持原样,如果不小心修改了一个不存在的水平,它也会给出警告。
%>% count(partyid)
gss_cat #> # A tibble: 10 x 2
#> partyid n
#> <fct> <int>
#> 1 No answer 154
#> 2 Don't know 1
#> 3 Other party 393
#> 4 Strong republican 2314
#> 5 Not str republican 3032
#> 6 Ind,near rep 1791
#> 7 Independent 4119
#> 8 Ind,near dem 2499
#> 9 Not str democrat 3690
#> 10 Strong democrat 3490
%>%
gss_cat mutate(
partyid = fct_recode(
partyid,"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat"
)%>%
) count(partyid)
#> # A tibble: 10 x 2
#> partyid n
#> <fct> <int>
#> 1 No answer 154
#> 2 Don't know 1
#> 3 Other party 393
#> 4 Republican, strong 2314
#> 5 Republican, weak 3032
#> 6 Independent, near rep 1791
#> 7 Independent 4119
#> 8 Independent, near dem 2499
#> 9 Democrat, weak 3690
#> 10 Democrat, strong 3490
可以将多个原水平赋给同一个新水平,这样就可以合并原来的分类:
%>%
gss_cat mutate(
partyid = fct_recode(
partyid,"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat",
"Other" = "No answer",
"Other" = "Don't know",
"Other" = "Other party"
)%>%
) count(partyid)
#> # A tibble: 8 x 2
#> partyid n
#> <fct> <int>
#> 1 Other 548
#> 2 Republican, strong 2314
#> 3 Republican, weak 3032
#> 4 Independent, near rep 1791
#> 5 Independent 4119
#> 6 Independent, near dem 2499
#> 7 Democrat, weak 3690
#> 8 Democrat, strong 3490
也可以使用 fct_recode() 函数的变体 fct_collapse() 函数。对于每个新水平,你都可以提供一个包含原水平的向量:
%>%
gss_cat mutate(partyid = fct_collapse(
partyid,other = c("No answer", "Don't know", "Other party"),
rep = c("Strong republican", "Not str republican"),
ind = c("Ind,near rep", "Independent", "Ind,near dem"),
dem = c("Not str democrat", "Strong democrat")
%>%
)) count(partyid)
#> # A tibble: 4 x 2
#> partyid n
#> <fct> <int>
#> 1 other 548
#> 2 rep 5346
#> 3 ind 8409
#> 4 dem 7180